Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field.

نویسندگان

  • Qing X Yang
  • Jianli Wang
  • Michael B Smith
  • Mark Meadowcroft
  • Xiaoyu Sun
  • Paul J Eslinger
  • Xavier Golay
چکیده

Geometric distortion, signal-loss, and image-blurring artifacts in echo planar imaging (EPI) are caused by frequency shifts and T(2)(*) relaxation distortion of the MR signal along the k-space trajectory due to magnetic field inhomogeneities. The EPI geometric-distortion artifact associated with frequency shift can be reduced with parallel imaging techniques such as SENSE, while the signal-loss and blurring artifacts remain. The gradient-echo slice excitation profile imaging (GESEPI) method has been shown to be successful in restoring tissue T(2)(*) relaxation characteristics and is therefore effective in reducing signal-loss and image-blurring artifacts at a cost of increased acquisition time. The SENSE and GESEPI methods are complementary in artifact reduction. Combining these two techniques produces a method capable of reducing all three types of EPI artifacts while maintaining rapid acquisition time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Microimaging at 14 tesla using GESEPI for removal of magnetic susceptibility artifacts in T(2)(*)-weighted image contrast.

In magnetic resonance imaging (MRI), T(2)(*)-weighted contrast is significantly enhanced by extremely high magnetic field strength, offering broad potential applications. However, the T(2)(*)-weighted image contrast distortion and signal loss artifact arising from discontinuities of magnetic susceptibility within and around the sample are also increased, limiting utilization of high field syste...

متن کامل

[Study of aliasing ERROR with SENSE in body diffusion image using single-shot EPI at 3T].

Magnetic field inhomogeneity causes artifacts in MRI. For example, in single-shot echo-planar imaging (EPI), they often appear as severe geometric distortions along the phase-encoding direction. Sensitivity encoding (SENSE) is useful in reducing the distortion in EPI since it only acquires partial k-space data using multiple receiver channels. In SENSE, a reference scan usually needs to be perf...

متن کامل

An Iterative Method for Parallel MRI SENSE-based Reconstruction in the Wavelet Domain

To reduce scanning time and/or improve spatial/temporal resolution in some MRI applications, parallel MRI (pMRI) acquisition techniques with multiple coils acquisition have emerged since the early 1990’s as powerful 3D imaging methods that allow faster acquisition of reduced Field of View (FOV) images. In these techniques, the full FOV image has to be reconstructed from the resulting acquired u...

متن کامل

FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) by

FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) Zhenghui Zhang, PhD University of Pittsburgh, 2006 This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2004